
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 3, May 2006

A Compact Guidance, Navigation, and Control System for
Unmanned Aerial Vehicles

Henrik B. Christophersen,∗ R. Wayne. Pickell,∗ James C. Neidhoefer,∗ Adrian A. Koller,† Suresh, K. Kannan,∗ and
Eric N. Johnson‡

Georgia Institute of Technology, Atlanta, GA, 30332-0150

The Flight Control System 20 (FCS20) is a compact, self-contained Guidance, Naviga-
tion, and Control system that has recently been developed to enable advanced autonomous
behavior in a wide range of Unmanned Aerial Vehicles (UAVs). The FCS20 uses a floating
point Digital Signal Processor (DSP) for high level serial processing, a Field Programmable
Gate Array (FPGA) for low level parallel processing, and GPS and Micro Electro Mechani-
cal Systems (MEMS) sensors. In addition to guidance, navigation, and control functions, the
FCS20 is capable of supporting advanced algorithms such as automated reasoning, artificial
vision, and multi-vehicle interaction. The unique contribution of this paper is that it gives a
complete overview of the FCS20 GN&C system, including computing, communications, and
information aspects. Computing aspects of the FCS20 include details about the design pro-
cess, hardware components, and board configurations, and specifications. Communications
aspects of the FCS20 include descriptions of internal and external data flow. The information
section describes the FCS20 Operating System (OS), the Support Vehicle Interface Library
(SVIL) software, the navigation Extended Kalman Filter, and the neural network based
adaptive controller. Finally, simulation-based results as well as actual flight test results that
demonstrate the operation of the guidance, navigation, and control algorithms on a real
Unmanned Aerial Vehicle (UAV) are presented.

Nomenclature
aIMUx, aIMUy, aIMUz acceleration measurement from the IMU
bax , bay , baz accelerometer measurement biases
bωx , bωx , bωx rate gyro biases
f the process model
Fk the process model Jacobian at tk
g the gravitational constant
ht altitude of ground level
hcg altitude of the center of gravity (c.g.)
hk the measurement model at time tk
Hk the measurement model Jacobian at tk
hsensor altitude of the pressure sensor

Received 27 July 2005; revision received and accepted for publication 17 November 2005. Copyright 2005 by Henrik B.
Christophersen, R. Wayne. Pickell, James C. Neidhoefer, Adrian A. Koller, Suresh, K. Kannan and Eric N. Johnson. Published
by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.∗ Research Engineer, Aerospace Eng. Dept., Georgia Institute of Technology, Atlanta, GA, 30332-0150.
† Graduate Research Assistant, Aerospace Eng. Dept., Georgia Institute of Technology, Atlanta, GA, 30332-0150.
‡ Lockheed Martin Assistant Professor of Avionics Integration, Aerospace Eng. Dept., Georgia Institute of Technology, Atlanta,
GA, 30332-0150.

187

CHRISTOPHERSEN ET AL.

Kk Kalman Filter gain at time tk
ω angular velocity vector
P −

k predicted error covariance matrix at time tk
P +

k corrected error covariance matrix at time tk
Q(t) process noise covariance matrix at time t
q0, q1, q2, q3 quaternion parameters
rGPS position vector of GPS relative to the c.g.
rsensor position vector of sensor relative to the c.g.
Rk measurement noise covariance matrix at time tk
�t integration time step
Tb−>i transformation from body frame to inertial frame
Tb−>i[3] third row of Tb−>i

tk the time at which the kth measurement is taken
u x-body axis velocity
u(t) control vector at time t
uk process control vector at time tk
vk measurement noise at time tk
v y-body axis velocity
vcg velocity of the c.g.
vGPS velocity of the GPS in and inertial frame
w z-body axis velocity
w(t) process noise at time t
wsensor pressure sensor measurement noise
wx GPS position measurement noise
wv GPS velocity measurement noise
wω IMU angular rate measurement noise
wa IMU acceleration measurement noise
x(t) process model state
xpos x position
xposGPS position of the GPS in an inertial frame
xposcg position of the c.g.
xk process state at time tk
x̂−

k predicted state estimate at time tk
x̂+

k corrected state estimate at time tk
ypos y position
yk output estimate at time tk
zk observations at time tk
zpos z position

List of Acronyms
A/D Analog to Digital
ADC Analog to Digital Converter
BGA Ball Grid Array
COTS Commercial-Off-The-Shelf
CPU Central Processing Unit
D/A Digital to Analog
DAC Digital to Analog Converter
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
EC20 FC20 Processor Board

188

CHRISTOPHERSEN ET AL.

EDMA Enhanced Direct Memory Access
EKF Extended Kalman Filter
EMIF External Memory Interface
FIFO First-In First-Out
FLOPS Floating Point Operations Per Second
FCS20 Flight Control System Version 20
FPGA Field Programmable Gate Array
GN&C Guidance, Navigation, and Control
GPS Global Positioning System
GUI Graphical User Interface
IC Integrated Circuit
IMU Inertial Measurement Unit
I/O, IO Input/Output
JTAG Joint Test Access Group
LC Logic Cell
MEMS Micro Electro-Mechanical System
MIPS Millions of Instructions Per Second
NAC Neural Adaptive Controller
NED North, East, Down
OS Operating System
PCB Printed Circuit Board
PD Proportional, Derivative
PDA Personal Digital Assistant
PLL Phase Locked Loop
PWM Pulse Width Modulated
ROM Read Only Memory
RTOS Real Time Operating System
SB20 FCS20 Sensor/Power Board
SDRAM Synchronous Dynamic Random Access Memory
SVIL Support Vehicle Interface Library
UART Universal Asynchronous Receiver Transmitter
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
UAV Unmanned Aerial Vehicle

I. Introduction

AS the capabilities of Unmanned Aerial Vehicles (UAVs) expand, increasing demands are being placed on the
hardware and software that comprise their Guidance, Navigation, and Control (GN&C) systems. In addition to

standard functions such as data acquisition, filtering, stability augmentation, and tracking control, state-of-the-art
GN&C systems must now support more advanced functions such as automated decision making, obstacle avoidance,
target acquisition, target tracking, artificial vision, and interaction with other manned and unmanned systems.
Furthermore, interest in small, mini, and micro UAVs is growing. So, while GN&C system performance requirements
are increasing, the acceptable form factors (size and weight) of these systems are decreasing.

A small, integrated GN&C hardware and software system, referred to as the Flight Control System Version 20
(FCS20), has recently been developed to maximize this ratio of performance to size, with the capability of supporting
advanced algorithms in a very compact package. The FCS20 uses both Field Programmable Gate Array (FPGA) and
Digital Signal Processor (DSP) technology to enable custom vehicle interfacing and fast sequential processing of
high-level GN&C algorithms.

This miniature computer uses its floating point Digital Signal Processor (DSP) for high level serial processing, its
Field Programmable Gate Array (FPGA) for low level parallel processing, and Micro Electro Mechanical Systems

189

CHRISTOPHERSEN ET AL.

(MEMS) sensors. In addition to controlling the vehicle, the FCS20 can also support payload control, image processing,
communications interfaces (encryption), vehicle health monitoring, and other high level algorithms. Using a single
FCS20 to support these systems differs from the more traditional approach of using separate and dedicated hardware
components.

The maximization of the performance-to-size ratio in the FCS20 was achieved largely during the design process by
creating a “purebred” system for GN&C type applications. Many modern flight control systems are rendered bulkier
and more inefficient by hardware, operating systems, and low level software that contain a great deal of overhead
functionality, such as video and sound outputs, keyboard data entry, GUIs, etc. The FCS20, on the other hand,
uses very streamlined and specialized hardware and software systems that can support high levels of performance
with relatively low power and space requirements. Furthermore, the FCS20 still retains much of the flexibility and
functionality of larger systems due to its expandability and programmability.

To support customization for a wide range of applications, the FCS20 uses a modular building block strategy
to link its various components. The basic modules of the FCS20 are the EC20 processor board and the SB20
sensor/power board. A minimal FCS20 system consists of one EC20 board and one SB20 board, usually set up
with the boards connected back to back. Expanded bank or stack configurations with multiple EC20 boards or other
application-specific boards can be assembled in various physical arrangements.

While the FCS20 may be slightly more expensive (due to its FPGA) than other small, commercially available,
stand-alone GN&C hardware/software systems, it offers advantages in terms of both size and performance. Some
commercially available systems include the Piccolo by Cloudcap Technolgy,1 the MP2028 g by Micropilot,2 theAP50
by UAV Flight Systems, Inc.,3 and the GS111 m by Athena Controls.4 These systems all use similar sensor suites
as well as processors for data acquisition, filtering, and control and I/O for interfacing with servos, data links, etc.
They also all offer multiple control modes, such as airspeed and altitude control and 3D way-point navigation. All of
these systems include ground support software and are designed to operate with a wide variety of UAV platforms. In
terms of size, only the Micropilot MP2028 g is smaller than the FCS20, with a 100 × 40 mm board plan-form versus
an 85 × 55 mm FCS20 board. In terms of sensing performance, the capabilities of all five systems are comparable.
They all incorporate inertial rate gyros and accelerometers, altitude sensors, and integrated GPS, as well as some
type of filter to estimate attitude. However, of the five systems, only the FCS20 offers the computing flexibility
and performance of both a DSP and an FPGA, and is capable of supporting advanced functions such as automated
decision making, obstacle avoidance, target acquisition, artificial vision, etc.

The FCS20 can also be compared to several COTS products that contain both DSPs and FPGAs on the same
board. These include the ADDS-21261/Cyclone Evaluation Platform,5 the Micro-Line C6713Compact,6 and the
SignalWave.7 The ADDS-21261/Cyclone is produced by Danville Signal, Analog Devices, Altera, and Arrow Elec-
tronics. This system combines an Analog Devices ADSP-21261 DSP and an Altera EP1C3 Cyclone FPGA on a single
board. The Micro-Line C6713Compact is produced by Traquair. It incorporates a high performance TMS320C6713
floating-point DSP Processor, a Virtex-II FPGA, an IEEE 1394 FireWire communications interface, up to 64MBytes
of SDRAM, and 8MBytes of FLASH ROM. The SignalWave is produced by Lyrtech. It uses a Texas Instruments
TMS320C6713TM DSP, a 3M gates Xilinx Virtex-IITM FPGA, and high speed ADC and DAC up to 65 MHz.
While the SignalWave is intended for use with audio systems, the Cyclone and the Micro-Line are both general use
systems. All of these systems are capable of interfacing with a wide variety of peripheral devices; however, none has
a dedicated sensor board suitable for autonomous UAV operations, nor are the authors aware of any of these systems
having been used for UAV operations.

This paper focuses first on three major aspects of the FCS20: computing, communications, and information. The
computing aspects of the FCS20 include details about the design process, hardware components, board configurations,
and specifications for EC20 Processor board and the SB20 Sensor/Power board. The communications aspects of
the FCS20 include descriptions of internal and external data flow. The information section describes the FCS20
Operating System (OS), the Support Vehicle Interface Library (SVIL), the Navigation Kalman filter, and the neural
network based adaptive controller. Finally, flight test results of the FCS20 controlling an 11-inch ducted fan are
presented. The result is a clear illustration that future small UAV systems can potentially take advantage of far more
complex onboard processing than is the case today. Along the way, several specific methods are described; methods
that are part of one approach to achieving this objective.

190

CHRISTOPHERSEN ET AL.

II. Computing: The FCS20 Hardware
A. The EC20 Processor Board
1. EC20 Background

The EC20 Processor board handles FCS20 processing and internal and external communications. Early design
approaches for the FCS20 utilized COTS components, such as cell phones and Personal Digital Assistants (PDAs),
that already included many of the necessary hardware features, but these designs did not achieve desired performance
levels and were thus discarded. Other preliminary designs involved systems based solely on FPGAs. However, these
pure-FPGA systems required that a floating-point core be implemented in the FPGA, which would have resulted in
a loss of flexibility and cost efficiency.

To illustrate, a typical FPGA chip with 11,000 Logic Cells (LCs) costs approximately $220.00 or $0.02 per LC.
A 40 Mflop floating point core processor (VHDL module) implemented in the FPGA would use 5000 LCs or roughly
$100.00 worth of the LCs on the FPGA. On the other hand, a much more powerful 1.35 Gflop floating point DSP
costs only about $35.00 and would not occupy any of the resources on the FPGA. Thus, the decision to incorporate a
DSP onto the same board as the FPGA ultimately promised the best combination of high performance and low cost.
The use of floating point DSP processing also simplified the programming of many of the guidance, navigation, and
control functions.

Another important design decision stemmed from the desire to avoid transferring high-speed signals between
boards. Thus, all high-speed components were placed on the EC20, while the lower speed components were relegated
to the SB20.

This solution, in which a fast sequential processing core in the DSP is supported by a parallel system of lower-level
support components in the FPGA, was implemented with aTexas Instruments 225 MHz Floating PointTMS320C6713
DSP along with an Altera 1M gate Stratix FPGA. In addition, the EC20 includes a high-speed internal data bus and
few external interrupts, allowing the DSP to spend more time on high speed processing and less time on data transfers.

2. EC20 Hardware Components
The EC20 processor board has seven main components: the DSP, the FPGA, the AMD flash memory, two Micron

SDRAMs, a Pericon clock driver, and a power supervisor. The Texas Instruments TMS320C6713 DSP and 780
pin ALTERA Stratix EP1S10 FPGA were chosen based on their capabilities and footprints, as well as previous
experience by the authors. The 3 memory blocks, the clock driver, and the power supervisor were chosen mainly for
their compact Ball Grade Array (BGA) footprints.

3. EC20 Board Configuration
The left half of Fig. 1 shows the relative locations of the main hardware components and headers on the EC20

processor board. The right half of the figure shows a screenshot of the high level PCB diagram of the board. On the
EC20, a 32 bit internal bus connects the FPGA to the DSP and acts as a conduit for information flow between the
two. As can be seen in Fig. 1 (left), SDRAM #1 is connected directly to the internal bus for use by the DSP. SDRAM
#2 is used solely by the FPGA. The Flash memory, which is the only nonvolatile component on the board, holds the
FPGA image and DSP software.

The clock driver generates the frequencies required for use by the DSP and FPGA, and the power supervisor
holds the processor in reset until all voltages are at approved levels during power up. Headers P1 through P6 are used
for interfacing the EC20 with the SB20 and other external components such as sensors, actuators, communications
equipment, etc.

The components were arranged on the board to minimize total board size. A priority was keeping the internal bus
as short as possible while still keeping the bus-accessible memory close to the bus. As a result, the DSP and FPGA
are located very close to each other, and a short 32-bit parallel bus runs directly between them with just enough
space to allow nearby placement of the bus accessible SDRAM and flash memory (See Fig. 1, left). Also, keeping
the I/O connectors close to the FPGA I/O pins minimizes trace lengths, and thus the headers (P1–P6 in Fig. 1, left)
are located very close to the edges of the FPGA. After placing the DSP, FPGA, bus, memory, and headers, the other
components were arranged to minimize total required trace lengths. Once the general layout had been determined,
the whole configuration was condensed onto a board the size of a credit card. The dimensions of the resulting board
are labeled in Fig. 2.

191

CHRISTOPHERSEN ET AL.

Fig. 1 The EC20 processor board configuration and high level PCB diagram.

4. EC20 Processor Board Specifications Summary
The EC20 contains all of the components required for fast data processing, including a total of 32Mbytes of

SDRAM and 8Mbytes of configuration FLASH memory. Other items include power saving circuitry, 110 general
purpose IO-pins, optional remote configuration control and dedicated board-to-board fast differential serial lines that
operate at up to 840Mb/s. EC20 specifications are given below.

1) Texas Instrument TMS320C6713 Floating Point DSP
a. Eight 32-bit instructions / cycle
b. 225 MHz, 4.4 ns Instruction Cycle Time
c. 1800/1350 MIPS/FLOPS
d. 8K L1 cache, 256K L2 cache
e. External Memory Interface (EMIF)
f. Enhanced Direct Memory Access (EDMA)
g. 272-pin BGA package

2) Altera EP1S40 Stratix FPGA (−10, −20, −25 and −30 are optional parts)
a. 41,250 Logic Elements
b. 3.4M internal RAM bits
c. 14 DSP Blocks (250 MHz MACs)
d. 112 Embedded Multipliers
e. 12 PLLs
f. 615 IO pins
g. 80 high-speed differential channels optimized to 840Mbps each
h. Support for multiple high-speed networking and communications bus standards
i. Support for multiple Altera MegaCore functions including NiosTM soft-core embedded processor

3) 128Mb (4Mx32) Micron 140 MHz SDRAM for DSP processor
4) 128Mb (4Mx32) Micron 140 MHz SDRAM for FPGA (NiosTM CPU)
5) 64Mb (8Mx8) AMD FLASH memory for configuration data

a. Eight banks internally or externally selectable

192

CHRISTOPHERSEN ET AL.

Fig. 2 The EC20 processor board form.

6) 100 MHz × 32 bit data bus (DSP, SDRAM, FPGA)
7) 100 General purpose 3.3V IO pins in three 2 mm headers
8) 10 high-speed differential channels (840Mbps each) in separate header for twisted-pair board-to-board

communication networks (i.e. back plane bus)

193

CHRISTOPHERSEN ET AL.

9) Optional external Flash Bank select signals for externally controlled system configuration
10) Advanced Clock Architecture

a. 20 MHz reference Oscillator with Zero-Skew Clock Driver
b. Hardware configurable clock multiplier for data bus
c. Software configurable DSP core frequency (on-the-fly)
d. PLLs in FPGA enable multiple internal and external clock schemes
e. Both reference clocks and PLL output clocks available at IO headers

11) Power saving features
a. Software controlled DSP core frequency
b. Software controlled PLLs in FPGA
c. External reset/board shutdown

12) Power management
a. 3.3V, 1.5V and 1.26V (from power supply board)
b. Triple voltage supervisor

13) Size: 55 mm × 85 mm
14) Weight: about 30 g

B. The SB20 Sensor/Power board
1. SB20 Background

The SB20 sensor/power board was designed to be compatible with the EC20 processor board and provides three
main functions: supplying regulated and filtered power to the system, supporting onboard or external navigation
sensors, and serving as an interface to external components.

2. SB20 Hardware Components
The eight main sensor components of the SB20 consist of three Analog Devices ADXR300 rate gyros, two Analog

Devices ADXL210E 2-axis 10 g accelerometers, a µBlox GPS module, and Freescale absolute and differential
pressure sensors. The board also contains four voltage regulators and level converters for the input/output pins used
to interface with servos/actuators and other components.

3. SB20 Board Configuration
The left half of Fig. 3 shows the relative locations of the main hardware components and headers on the SB20

sensor/power board. The right half of the figure shows a screenshot of the high level PCB diagram of the board.
The SB20 uses the same form factor as the EC20 (see Fig. 2), with a layout such that the main headers line up

when the boards are assembled back-to-back. In general, the layout of the SB20 was driven by the desire to locate
the high frequency switching power regulators as far as possible from the sensitive circuitry in the analog sensors
and A/D converters. As seen in Fig. 3, the power regulators are located on the top of the board, the digital circuitry,
including the RS-232 drivers and the digital section of the GPS module, are located in the middle of the board, and
the analog sensors and A/D converters are located at the bottom of the board.

In order to sense accelerations and angular rates in three axes, two sub-boards were mounted perpendicular to
the main board and to each other (see Fig. 3). Each sub-board has its own ADS8341 16 bit A/D converter. These
A/D converters are located immediately opposite the sub-board mounted sensors. The analog signals from the
accelerometers are routed to the A/D converters through second order low pass filters, and the PWM signals from
the accelerometers are routed directly to the FPGA. The analog signal from the absolute pressure sensor is routed
to an AD7708 16 bit A/D converter located on sub-board #2. This A/D converter has software controlled reference
voltages to enable maximum resolution. The sensors were placed to minimize the thickness of the installed board.
Consideration was given to the orientation of connectors and pressure transducer ports such that ribbon cables and
pressure plumbing could be routed close to the surface of the board.

In addition, the rate gyros used in the SB20 have temperature-sensing capabilities that can be used to detect the
installed operating conditions inside the enclosure. The SB20 also has an A/D channel dedicated for sensing the
main power supply voltage.

194

CHRISTOPHERSEN ET AL.

Fig. 3 The SB20 sensor/power board configuration and high level PCB diagram.

4. SB20 Sensor/Power Board Specifications Summary
In addition to hosting the sensor suite and distributing power to itself, the EC20, and other FCS20 components,

the SB20 has four additional single ended A/D channels located on Header P4. P4 can also accept hardware and
software reset signals that come from external push buttons or switches.

Highlights of the SB20 specifications are given below.
1) Three-axis IMU, Analog Devices +/−300 degrees Solid State Rate Gyros with a Temperature Sensor
2) Two 2-axis +/−10 g accelerometers (one axis redundant)
3) µBlox TIM-LF GPS module
4) FreeScale 0–15PSI Absolute Pressure Sensor (Static pressure)
5) FreeScale Differential Pressure Sensor (Dynamic pressure)
6) Two 16-bit, ADS8341 ADCs with SPI interface
7) One AD7708 8ch Sigma-Delta ADC
8) Four RS232 ports
9) 12 General Purpose 5V IO pins

10) Power regulators providing 5V, 3.3V, 1.8V and 1.26V
11) Size: 55 mm × 85 mm × 20 mm (including GPS receiver)
12) Weight: approximately 40 g

C. FCS20 Circuit Diagrams and PCB Layouts
After selecting components and determining the general layouts for the EC20 and SB20 boards, detailed circuit

diagrams and PCB layouts were developed.
The high component density of the EC20 and the SB20 necessitated careful planning of component placement,

pin assignments, and manual routing. Screenshots showing the highest levels of the EC20 and SB20 PCB layouts are
shown in the right halves of Fig. 1 and Fig. 3 respectively. Finally, after the routing was completed, pin designations
were made for the FPGA and associated connectors.

195

CHRISTOPHERSEN ET AL.

D. FCS20 System Operation
1. FCS20 Boot Sequence and System Operation

As detailed in Section II.A, the EC20 processor board consists of a TI DSP processor, an Altera Stratix FPGA,
memory, clock driver circuits, and interface headers. The DSP gives the board its sequential processing power, and
the FPGA performs all low-level and parallel interface functions to external components. A 32-bit, parallel data bus
enables communication between the FPGA and the DSP. As the JTAG header (See Fig. 1) is only used for the initial
DSP software load, the DSP communicates with external components solely through the FPGA.

The DSP serves as both the system’s main sequential processor and as a configuration device for the FPGA. After
power has been supplied to the board and the power supervisor has released the reset-line, the DSP will boot up and
load the default application from Flash memory. Then, the DSP will configure the FPGA with an image from Flash
via a dedicated 8-bit configuration data bus. After the FPGA image has been loaded and the DSP has released the
FPGA hardware reset line, the DSP is able to communicate with the FPGA. At this point, the softcore CPU on the
FPGA becomes the system master and initiates every flight control cycle by sending the most recent sensor data to
the DSP, which then processes the data and ships the results back to the FPGA.

After the FPGA has become operational, it controls the flow of data within itself and to/from the DSP. It is
responsible for loading updated DSP software into Flash. It also tells the DSP which application to run, gives
software reset commands to the DSP, issues interrupts, and controls the DSP core frequency. It can also order its own
reconfiguration, as illustrated in the following example:

1. As power is applied to the board, the DSP starts up and loads itself and the FPGA with the configuration
currently stored in Flash memory. The softcore processor in the FPGA (the NiosTM CPU) then becomes the
master controller.

2. A new version of the DSP application software is to be loaded. A request is sent to the master CPU in the
FPGA and shortly thereafter, the new application is loaded into Flash memory via the DSP. Data may be sent
to the FPGA through any of the 110 IO pins in any desirable format, but for this example we assume that the
new application is loaded through a standard RS232 serial line to a UART in the NiosTM CPU.

3. The master CPU in the FPGA then orders the DSP to either perform a software reset or simply start execution
of the new code.

2. Asynchronous System Clocks
The DSP, the FPGA, and the internal data bus on the EC20 all operate on separate clocks. The 20 MHz oscillator

(see Fig. 1) drives two Phase Locked Loops (PLLs) in the DSP. The first is controlled dynamically up to 225 MHz
and is used for the DSP core. The second is used for the internal bus, which runs at 50 MHz.

The FPGA receives the native 20 MHz (from the oscillator) and has multiple internal PLLs that generate frequencies
for various components. In the standard configuration, two PLLs are used in the FPGA, though up to twelve can
be supported. The FPGA also receives the bus clock signal. The asynchronous clock domains in the FPGA require
special handling in the FIFOs. NiosTM, the softcore CPU (in the FPGA), and its associated circuitry runs off one
clock, and special dual-clock FIFOs are used to interface between NiosTM and the internal data bus. The advantage of
this configuration is that clock frequencies for FPGA components and the internal data bus can be set independently
from each other.

In summary, data from the SB20 sensor/power board is received in the EC20 through one of the 40 pin headers. It
is then preprocessed in the FPGA and bundled and transferred to the DSP through a set of First-In First-Out (FIFO)
queues in the FPGA. Actuator commands are then sent from the DSP back to the appropriate servo driver component
in the FPGA, thus closing the main flight control loop.

3. Power Requirements
The FCS20 system power requirements are driven largely by the sum of the requirements for the DSP, the FPGA,

and the sensors. When used in the minimum two-board FCS20 configuration, the SB20 is usually powered by a
lithium polymer 11.1 Volt three-cell battery. Power in the system is split by four power regulators. 3.3 Volts is
provided to both the FPGA and the DSP I/O on the EC20. 3.3 Volts is also used by the GPS and RS232 drivers on
the SB20. The FPGA core requires 1.5 Volts and the DSP core requires 1.26 Volts. A linear regulator supplies 5 Volts
to the inertial sensors and A/D converters.

196

CHRISTOPHERSEN ET AL.

Current consumption in the two-board configuration varies depending on the DSP clock rate and the number of
FPGA Logic Cells used. At a clock speed of 225 MHz, the DSP core requires 700 mA, but at 100 MHz, the DSP
requires only 100 mA. This provides a performance vs. operation-time option to the user. In general, however, the
FCS20 operates at 1–3 Watts, 0.4 Watts of which is consumed by the SB20. An additional 1–3 Watts are required for
each additional EC20 added to the system.

III. Communications: FCS20 Internal and External Data Flow
E. Internal Data Flow

Internal data flow in the FCS20 is dominated by the communication between the DSP and the FPGA that occurs
through the high-speed 32-bit internal data bus. Multiple, parallel First-In First-Out (FIFO) components inside the
FPGA enable communication with the DSP from dedicated components within the FPGA, avoiding information
bottlenecks and reducing time delays. The FIFOs also act as buffers between the different components, which helps
ensure data integrity.

Figure 4 highlights the main data flow pathways in the FCS20 system. Onboard the SB20, the analog sensors are
read by the A/D converters. The accelerometers have both analog and digital outputs, and the digital outputs are
sent directly to counters in the FPGA. The GPS on the SB20 communicates with the FPGA via an RS232 serial line,
while the video encoder sends its output directly to an interface in the FPGA. As the FPGA receives packets of sensor
data, it processes and packages the data, and sends relevant data to the DSP via the high-speed internal data bus. The
data is then processed on the DSP by the guidance, navigation, and control algorithms. Control outputs are then sent
back to the FPGA via the internal data bus, converted to PWM signals, and sent out to external servos. On the EC20,
there is also communication between SDRAM #2 and the FPGA. SDRAM #2 is a memory block dedicated solely
for use by the FPGA. SDRAM #1 is controlled by the DSP, and the Flash Memory is used to store the FPGA image
and DSP software. Relevant data from the NiosTM processor is also sent to an external communications device via a
dedicated serial line. The FPGA allows for future flexibility through the addition of communication interface logic,
image sensor interfaces, Ethernet, USB, and encryption or other protocols.

Fig. 4 FCS20 Data Flow Diagram.

197

CHRISTOPHERSEN ET AL.

F. Main and Secondary Bus Descriptions
The FCS20 has two main buses. The main bus is the 32-bit parallel high-speed internal data bus, with a maximum

throughput of 250 Mbps, which acts as a conduit of information flow between the FPGA and the DSP. This very short
internal bus runs directly between the DSP and the FPGA with just enough extra space to allow nearby placement
of the bus accessible SDRAM and Flash memory (See Fig. 1 and Fig. 4).

The secondary bus is highly configurable and will talk only to the FPGA. The bus structure of this secondary
bus was intentionally made flexible so that developers could choose a bus standard suitable for their application.
The secondary bus will utilize high-speed differential serial channels from the FPGA and will be dedicated for
board-to-board and other customized external communications. As configured, there are seven of these high-speed
channels (rated for up to 840 Mbps) available on the 40 pin headers.

IV. Information: FCS20 Software Systems and Supported Algorithms
A. The FCS20 Operating System

The DSP in the FCS20 utilizes the MicroC/OS-II real-time operating system (RTOS). The operating system is a
preemptive, multitasking kernel set up to manage up to 64 separate tasks. This kernel includes basic operating system
services such as semaphores, mutual exclusion semaphores, event flags, message mailboxes, message queues, task
management, fixed size memory block management, and time management functions.8 The execution times for most
services in the operating system are constant and deterministic and do not depend on the number of tasks running in
the system. In the FCS20, the RTOS manages the data transfer to and from the FPGA.

B. The FCS20 Standard Vehicle Interface Library
The Standard Vehicle Interface Library (SVIL) is comprised of generic and highly capable data communication

and simulation software modules that have been developed to support a large number of potential flight and simulator
test configurations.9 The lowest levels of the SVIL contain custom software modules that enable communication
with different hardware components like sensors, actuators and physical communication ports. Every device driver
in the SVIL is accompanied by a mathematical model of that sensor, including data packets as output by that sensor.
This enables full simulation of the sensor during a variety of ground tests.

Seamless interfacing with platform independent algorithms is achieved by abstracting devices to the level of
communication channels. To the algorithms, any device appears as a stream of packetized data on a particular
communication channel. Communication packets in the system consist of a header and data. The header contains
two synchronization bytes, a packet identifier, an indication of the packet size, and checksums for both the header and
the data. Communication channels may be dynamically assigned at runtime and even rerouted during flight. Figure 5
depicts the design of the SVIL and illustrates that real and simulated devices can be mixed in any combination. For
example, during laboratory work, where GPS signals are not available, simulated GPS data can be injected into the
navigation system as though it is actual raw sensor data.

On many occasions, the failure or anomalous behavior of algorithms during a flight test is due to differences
between the simulation setup and operational hardware. During flight, data passes through various components of
hardware and software before it arrives at the navigation algorithm. Simulating these effects, which can include
sampling, digitization, buffer overflows, too infrequent servicing of buffers etc. is important. A particular example
occurs when sensor data from an inertial measurement unit (IMU) is available through a serial port, but the serial ring
buffers are not sufficiently large to buffer more than one packet. If, at some instant, the device driver is unable to service
the buffers fast enough, the ring buffer overwrites older but valid IMU packets. During flight, this phenomenon can
introduce periodic or a-periodic losses of IMU packets. If a controller were developed in a simulation environment
that did not account for this effect and then flight tested, vehicle behavior could result in a misdiagnosis of the
problem. With the SVIL, many such problems are detected early because each device is essentially a channel, and
during both simulation and development, data from the simulated device goes through the same device driver code
and buffers at the same rate as it would during an actual flight.

Another important aspect of the SVIL is that in-flight recordings of sensor data channels can be played back
to algorithms, effectively replicating the flight through the same flight code. Because the data is not just passively

198

CHRISTOPHERSEN ET AL.

Fig. 5 Schematic of the Standard Vehicle Interface Library that depicts the abstraction from devices to
Communication channels.

replayed, but rather is actively processed by the algorithms just as it would be during flight, this feature becomes an
important diagnostic tool. Anomalous flight behaviors can be reproduced, the algorithms changed, and sensor data
replayed until the problem is corrected, significantly reducing development and debugging time.

C. The Navigation Kalman Filter
An integral component of the FCS20 is the sixteen state Extended Kalman Filter (EKF) that uses data from

the sensors on the SB20 processor board to generate a navigation solution that closely estimates the state of
the system.10−11 The EKF serves several important functions including: 1) estimating the orientation of the
system from accelerations and angular rates, 2) removing process and measurement noise from the measure-
ments, and 3) providing state estimates at 100 Hz, even though most sensor measurements are taken at a much
slower rate.

1. The EKF Process Model
The EKF is described by a set of continuous and discrete equations. Equation (1) is the state vector for the EKF

Process, and Equation (2) represents the continuous process model. The states in the navigation filter include: four
quaternion components, three position states, three velocity states, and six accelerometer and gyro biases.

x(t) = [q0, q1, q2, q3, xpos, ypos, zpos, u, v, w, bax, bay, baz, bωx, bωy, bωz] (1)

ẋ(t) = f (t, x(t), u(t)) + w(t) (2)

Since one of the main goals of the EKF is to provide values of the Euler orientation angles for pitch, roll, and yaw
(or equivalently, in this case, the four quaternion parameters) based on acceleration and angular rate measurements,

199

CHRISTOPHERSEN ET AL.

the process model f is made up of the following kinematic relationships [19]:

˙̂q0

˙̂q1

˙̂q2

˙̂q3

 = 1

2

0 −(ωIMUx − b̂p) −(ωIMUy − b̂q) −(ωIMUz − b̂r)

ωIMUx − b̂p 0 ωIMUz − b̂r −(ωIMUy − b̂q)

ωIMUy − b̂p −(ωIMUz − b̂r) 0 ωIMUx − b̂p

ωIMUz − br ωIMUy − bq −(ωIMUx − bp) 0

q̂0

q̂1

q̂2

q̂3

˙̂x = v̂ (3)

˙̂v = T̂b−>i(aIMU − b̂a) + g

˙̂
ba = 0

˙̂
bω = 0

The transformation from the body frame to the inertial frame is given by:

Tb−>i =

1 − 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1 − 2(q2
1 + q2

3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 − q0q1) 1 − 2(q2
1 + q2

2)

 (4)

Equations (5) and (6) represent the discrete measurement observations and the discrete output estimate. In these
equations, time tk is the time at which the kth measurement is taken.

zk = hk(tk, xk, uk) + vk (5)

ŷk = hk(tk, x̂
+
k , uk) (6)

2. The EKF Measurement Model
The measurement model h corresponds to the sensor measurements (except for the IMU) at the c.g. The set of

equations in (7) represent the sensor measurements corrected for the effects of measurement noise and for their
off-center location. In Equation (8), zk is the vector of corrected measurements that are available to the EKF.

xposcg = xposGPS − Tb−>irGPS − wx

vcg = vGPS − Tb−>iω × rGPS − wv (7)

hcg = −hsensor − Tb−>i[3]rsensor + ht − wsensor

zk = [xposcgvcghcg] (8)

3. The Extended Kalman Filter Implementation
Equations (9) and (10) are the state estimate time update (predictor) equations, and Equations (11) and (12) are

the error covariance time update equations. In these equations, the continuous derivatives (Equations (9) and (11))
are used along with standard numerical integration methods to propagate forward in time. In the case of the state
estimate propagation, a 2nd order modified Euler’s method (Equation (10)) is used, where ˙̂x−

k+1 is determined using
a temporary value for x̂−

k+1 that comes from a 1st order Euler predictor step. In the case of the error covariance, a 1st

order Euler’s method (Equation (12)) is used.

˙̂x(t) = f (t, x̂+
k , u) (9)

x̂−
k+1 = x̂+

k + �t

2
(˙̂x−

k+1 + ˙̂xk) (10)

Ṗ (tk) = F(t, x̂−
k , uk)P

−
k + P −

k F T (t, x̂−
k , uk) + Q(tk) (11)

P −
k+1 = P +

k + Ṗ (tk)�t (12)

200

CHRISTOPHERSEN ET AL.

Equation (13) is the equation for the Kalman Filter gain, and Equations (14) and (15) are the state and error
covariance measurement update (corrector) equations.

Kk = P −
k HT

k [HkP
−
k HT

k + Rk]−1 (13)

x̂+
k = x̂−

k + Kk(zk − hk(tk, x̂
−
k , uk)) (14)

P +
k = (I − KkHk)P

−
k (15)

Fk , and Hk , from Equations (11), (13), and (15), are calculated as follows:

Fk = ∂f

∂x

∣∣∣∣
x=x̂−

k

(16)

Hk = ∂hk

∂x

∣∣∣∣
x=x̂−

k

(17)

Fk =

F11 0 0 0 F15

0 0 I3×3 0 0
F31 0 0 F34 0
0 0 0 0 0
0 0 0 0 0

 , Hk =

[
I3×3 0

0 I3×3

]
(18)

Where:

F11 = 1

2

0 b̂p − ωIMUx b̂q − ωIMUy b̂r − ωIMUz

−b̂p + ωIMUx 0 −b̂r + ωIMUz b̂q − ωIMUy

−b̂q + ωIMUy b̂r − ωIMUz 0 −b̂p + ωIMUx

−b̂r + ωIMUz −b̂q + ωIMUy b̂p − ωIMUx 0

 (19)

F15 = 1

2

q̂1 q̂2 q̂3

−q̂0 q̂3 −q̂2

−q̂3 −q̂0 q̂1

q̂2 −q̂1 −q̂0

 (20)

I3×3 =

1 0 0

0 1 0
0 0 1

 (21)

F31 =

2(q̂3αy − q̂2αz) −2(q̂2αy + q̂3αz) 2(2q̂2αx − q̂1αy − q̂0αz) 2(2q̂3αx + q̂0αy − q̂1αz)

2(q̂1αz − q̂3αx) 2(2q̂1αy − q̂2αx + q̂0αz) −2(q̂1αx + q̂3αz) 2(2q̂3αy − q̂0αx − q̂2αz)

2(q̂2αx − q̂1αy) 2(2q̂1αz − q̂3αx − q̂0αy) 2(2q̂2αz − q̂3αy + q̂0αx) −2(q̂1αx + q̂2αy)

 (22)

Where:

αx

αy

αz

 =

b̂ax − aIMUx

b̂ay − aIMUy

b̂az − aIMUz

 (23)

F34 =

−1 + 2(q̂2
2 + q̂2

3) −2(q̂1q̂2 − q̂0q̂3) −2(q̂1q̂3 + q̂0q̂2)

−2(q̂0q̂3 + q̂1q̂2) −1 + 2(q̂2
1 + q̂2

3) −2(q̂2q̂3 − q̂0q̂1)

−2(q̂1q̂3 − q̂0q̂2) −2(q̂0q̂1 + q̂2q̂3) −1 + 2(q̂2
1 + q̂2

2)

 (24)

Equations (19) and (20) are generated by taking the partial derivatives of the quaternion component equations in
Equation (1) with respect to the quaternion components and gyro biases, respectively. Equations (22) and (24) are

201

CHRISTOPHERSEN ET AL.

generated by taking the partial derivatives of the velocity equations in (3) with respect to the quaternion components
and accelerometer biases, respectively. The EKF equations (9)–(15) above are similar to those derived in.12−13

It is interesting to note that while one of the main functions of the EKF is to estimate orientation angles based
on rates and accelerations, the rates and accelerations are not included as process states, nor are they included in the
EKF measurements in zk (Equation (8)). The acceleration and rate measurements are corrected for being located off
the c.g. in Equations (25)–(26), and then are used directly in the right hand side of the process equations (Equations
(3)). This is how the process noise is introduced into the EKF system. Another similar EKF implementation can be
found in14 for comparison.

The IMU (which is comprised of the accelerometers and rate gyros) gives the 3-axis acceleration, aIMU, and angular
rate, ωIMU, of the point at which it is mounted (which is typically not exactly at the c.g.). These measurements are
expressed in the body frame and are true values perturbed by two effects, a bias and a measurement noise, as follows:

acg = aIMU − ω̇ × rIMU − ω × (ω × rIMU) + ba + wa (25)

ωcg = ωIMU + bω + wω (26)

The GPS gives the position xposGPS and the velocity vGPS of the mounting location of the sensor. These mea-
surements are expressed in the NED frame and are true values perturbed by two effects: measurement noise and
latency (i.e. the output provided at time t corresponds to a measurement made at time t-latency). The EKF uses these
measurements, corrected for the effects of offset from the center of gravity and measurement noise, as follows:

xposcg = xposGPS − T̂b−>irGPS = xposGPS + (Tb−>i − T̂b−>i)rGPS + wx (27)

vcg = vGPS − Tb−>iω × rGPS = vGPS + (Tb−>iω × rGPS − T̂b−>iω̂ × rGPS) + wv (28)

ω̂ = ωIMU − b̂ω = ωIMU + bω − b̂ω + wω (29)

The latency in the GPS measurements is handled by making the assumption that the latency is small enough that
the correction for the measurement will not be significantly different for the current state versus the state at which
the measurement actually happened. In the actual implementation, a buffer is maintained that stores a history of
estimated states, so that when the residuals are calculated, the measurement is compared with the estimated state at
the time the measurement occurred.

4. The Measurement Noise Covariance Matrix
The measurement noise covariance matrix Rk has the form:

Rk =
[
R11 0
0 R22

]
(30)

where R11 corresponds to the measurement noise of the GPS position, R22 corresponds to the measurement noise
of the GPS velocity. The assumption is made that Tb−>i

∼= T̂b−>i in Equation (27), and thus the measurement noise
covariance matrix on xposcg is simply:

R11 = E(wx wT
x) =

σ 2

x 0 0
0 σ 2

y 0
0 0 σ 2

z

 (31)

The measurement noise covariance on the velocity, v, is more complex. We first let b̃ω = bω − b̂ω be the error in
estimating the gyro biases. We then assume that b̃ω, wω, and wv are independent and also that E(b̃ω b̃T

ω) is quasi-
diagonal (i.e. cross correlations are small relative to the autocorrelations). Then the measurement noise covariance

202

CHRISTOPHERSEN ET AL.

matrix on v is given by:

R22 = E(wvw
T
v) + T̂b−>iE((b̃ω × rGPS)(b̃ω × rGPS)

T)T̂ T
b−>i + T̂b−>iE((wω × rGPS)(wω × rGPS)

T)T̂ T
b−>i

= σ 2
v I3 + T̂b−>i

P15z

2 + P16y
2 −P16xy −P15xy

−P16xy P16x
2 + P14z

2 −P14yz

−P15xy −P14yz P15x
2 + P14y

2

+ σ 2
ω

z2 + y2 −xy −xz

−xy x2 + z2 −yz

−xz −yz x2 + y2

 T̂ T

b−>i (32)

where x, y, and z are the coordinates of the GPS in the body frame, and Pj is the j th diagonal element of the error
covariance matrix. The off diagonal terms in R22 are due mainly to the offset of the GPS antenna from the c.g., and
these terms are neglected, resulting in a diagonal measurement noise covariance matrix.

5. The Process Noise Covariance Matrix
As mentioned earlier, the process noise is introduced to the EKF process by the IMU measurements. Before being

used, the IMU measurements are corrected for mounting location by:

acorr = aIMU − ˙̂ω × rIMU − ω̂ × (ω̂ × rIMU)

ω̂ = ωIMU − b̂ω (33)

˙̂ω = ω̂(t + �t) − ω̂(t)

�t

So now:

˙̂v = T̂b−>i(acorr − b̂a) + g = T̂b−>i(acg + (ω̇ − ˙̂ω) × rIMU + ω × (ω × rIMU)

− ω̂ × (ω̂ × rIMU) + ba − b̂a + wa) + g (34)

The process noise for acceleration is assumed constant in the body axes, so the noise covariance is simply σ 2
accI3×3.

Now, considering the equation for the quaternion derivative

˙̂q0

˙̂q1

˙̂q2

˙̂q3

 = 1

2

0 −(ωIMUx − b̂p) −(ωIMUy − b̂q) −(ωIMUz − b̂r)

ωIMUx − b̂p 0 ωIMUz − b̂r −(ωIMUy − b̂q)

ωIMUy − b̂p −(ωIMUz − b̂r) 0 ωIMUx − b̂p

ωIMUz − br ωIMUy − bq −(ωIMUx − bp) 0

q̂0

q̂1

q̂2

q̂3

= 1

2

0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0

 q̂ + 1

2

0 −b̃p −b̃q −b̃r

b̃p 0 b̃r −b̃q

b̃q −b̃r 0 b̃p

b̃r b̃q −b̃p 0

 q̂ + 1

2

0 −wp −wq −wr

wp 0 wr −wq

wq −wr 0 wp

wr wq −wp 0

 q̂ (35)

203

CHRISTOPHERSEN ET AL.

and again, assuming that E(b̃ω b̃t
ω) is quasi diagonal, and that b̃ω and wω are independent, the process noise covariance

Q(t) has the following form:

σ 2
ω

4

1 − q̂2
0 −q̂0q̂1 −q̂0q̂2 −q̂0q̂3

−q̂0q̂1 1 − q̂2
1 −q̂1q̂2 −q̂1q̂3

−q̂0q̂2 −q̂1q̂2 1 − q̂2
2 −q̂2q̂3

−q̂0q̂3 −q̂1q̂3 −q̂2q̂3 1 − q̂2
3

+ 1

2

P14q̂
2
1 + P15q̂

2
2 + P16q̂

2
3 −P14q̂0q̂1 + P15q̂2q̂3 − P16q̂2q̂3 −P14q̂1q̂3 − P15q̂0q̂2 + P16q̂1q̂3

−P14q̂0q̂1 + P15q̂2q̂3 − P16q̂2q̂3 P14q̂
2
0 + P15q̂

2
3 + P16q̂

2
2 −P14q̂0q̂3 + P15q̂0q̂3 − P16q̂1q̂2

−P14q̂1q̂3 − P15q̂0q̂2 + P16q̂1q̂3 −P14q̂0q̂3 + P15q̂0q̂3 − P16q̂1q̂2 P14q̂
2
3 + P15q̂

2
0 + P16q̂

2
1

P14q̂1q̂2 − P15q̂1q̂2 − P16q̂0q̂3 −P14q̂0q̂2 + P15q̂1q̂3 − P16q̂0q̂2 −P14q̂2q̂3 + P15q̂0q̂1 − P16q̂0q̂1

P14q̂1q̂2 − P15q̂1q̂2 − P16q̂0q̂3

−P14q̂0q̂2 + P15q̂1q̂3 − P16q̂0q̂2

−P14q̂2q̂3 + P15q̂0q̂1 − P16q̂0q̂1

P14q̂
2
2 + P15q̂

2
1 + P16q̂

2
0

 (36)

This is effectively the result of starting with a process noise covariance of σ 2
ωI4×4 and zeroing the components along

the norm of the quaternion (since we have perfect information about the norm). In practice, however, this form for
the process noise covariance is singular, so we use σ 2

ωI4×4 directly.

D. The Guidance and Neural Net Based Adaptive Control Systems
Figure 6 shows the architecture of the neural network adaptive controller and the Baseline Trajectory Generator

that acts as the guidance system. The Neural Adaptive Controller (NAC) is an adaptive neural network trajectory-
following controller with 18 neural network inputs, 5 hidden layer neurons, and 6 outputs for each of the 6 degrees of
freedom.15−16 The NAC has been extensively flight tested with a wide range of applications including autonomous
takeoffs, landings, and trajectory tracking.17 Furthermore, the stability of the system has been rigorously addressed.16

A key advantage of the NAC is its ability to accommodate changing dynamics and payload configurations without
having to rely on substantial system identification efforts.16 This feature has been demonstrated by applying the
architecture to flight tests of the GTMax research UAV,17 and the ducted fan powered GTSpy UAV.18

Fig. 6 The Neural Adaptive Guidance and Control System Architecture.

204

CHRISTOPHERSEN ET AL.

In Fig. 6, the Outer Loop Approximate Inversion is created by first generating a linear model of the aircraft
around a trim condition while neglecting the coupling between the attitude and translational dynamics.16 Choosing
an invertible control matrix allows for the determination of a linear inverse control law. The outputs of the outer
loop inverse law represent the desired values of attitude and angular rate, which are fed to the Inner Loop Reference
Model and desired control command for the collective.16 The Inner Loop Approximate Inversion is based around
an invertible, linear, point-mass helicopter model. The gains of the PD linear compensators are chosen to place
the poles of the closed loop system’s longitudinal dynamics (inner loop PD affects the pitch angle, and outer loop
PD affects the fore-aft position) such that the result is favorable longitudinal dynamic closed-loop behavior16. The
reference models are designed with desirable dynamic characteristics, and they neglect actuator dynamics. The inner
and outer loop hedge blocks are used to prevent the adaptive element from trying to adapt to selected system input
characteristics.

V. Results Generated with the FCS20 Guidance, Navigation, and Control System
E. Simulation-Based Results

The following series of plots were generated using: 1) the Standard Vehicle Interface Library (SVIL) described in
Section IV.B, 2) the navigation Extended Kalman Filter (EKF) described in Section IV.C, 3) the Guidance and Control
Algorithms described in Section IV.D, and 4) a simulation of Georgia Tech’s Helispy (GTSpy) 11-inch ducted-fan
UAV (Fig. 7). Figures 9, 10, and 11 demonstrate that the EKF correctly estimates the orientation of the system from
accelerations and angular rates. In these three plots, the estimated pose angles closely follow the actual angles and
do not drift or diverge. Figures 12, 13, and 14 show that the EKF is removing process and measurement noise from
the measurements. Notice that in these three figures, the estimated values are smoother and much closer to the actual
values than the measured values are. Figure 14 shows that the EKF is providing state estimates at 100 Hz even though
most sensor measurements are taken at a much slower rate. Finally, Fig. 15 demonstrates that the guidance system
and Neural Adaptive Controller (NAC) are functioning properly to allow the GTSpy to traverse the desired “box”
pattern.

Fig. 7 Georgia Tech’s HeliSpy (GTSpy) 11 inch ducted-fan UAV.

205

CHRISTOPHERSEN ET AL.

Fig. 8 Actual and Estimated Roll Angle vs. Time.

Fig. 9 Actual and Estimated Pitch Angle vs. Time.

206

CHRISTOPHERSEN ET AL.

Fig. 10 Actual and Estimated Heading Angle vs. Time.

Fig. 11 Actual, Estimated, and Measured X-Position vs. Time.

207

CHRISTOPHERSEN ET AL.

Fig. 12 Actual, Estimated, and Measured Y-Position vs. Time.

Fig. 13 Actual, Estimated, and Measured Z-Position vs. Time.

208

CHRISTOPHERSEN ET AL.

Fig. 14 Actual, Estimated, and Measured X-Position vs. Time.

Fig. 15 Actual, Estimated, and Measured Position.

209

CHRISTOPHERSEN ET AL.

F. Flight-Test Results
Following initial checkout on Georgia Tech’s GTMax UAV,17 the FCS20 was utilized for guidance, navigation,

and control during flight tests of a GTSpy 11 inch ducted-fan UAV18 (Fig. 7).A number of tethered and approximately
10 un-tethered flights using the FCS20 have been conducted.

Results from a flight test in which the GTSpy autonomously executes a box maneuver similar to the one described
in Section V.A are shown in Figs 17 through 20. A video clip of this flight can be seen here.

In the flight test maneuver, the box was significantly smaller than in the simulated case. Also, in the flight test
maneuver, the aircraft had a zero degree commanded heading throughout the maneuver, whereas in the simulated
case, the commanded heading was in the direction of the next waypoint. As expected from the simulation results, the
controller performs well during the maneuver. However, comparison of Fig. 15 with Fig. 16 shows that the controller
does not track the trajectory as closely as in the simulated case. This is the result of two effects that were not included
in the above simulation runs: quantization error on the sensor measurements and atmospheric disturbances. The
flight test was performed with light, intermittent wind, whose presence contributed to the decreased performance.
There is one large discrepancy occurring on the third leg of the maneuver (See Fig. 16). This is probably due to
either a larger gust of wind or a large, erroneous GPS position measurement. Figure 17 shows the heading tracking
performance. The heading varies from the desired value more than in the simulation but remains within reasonable
bounds. Figures 18 and 19 show the position tracking with respect to the body frame axes. Some of the observed
errors are due to differences between the commanded and actual attitude. Additionally, some of the large errors noted
at times close to 20 seconds are due to the discrepancy observed in the third leg. An additional video clip of the
GTSpy being air launched from the GTMax can be seen here. and a video clip of the GTSpy performing a smooth
landing can be seen here.

Fig. 16 Flight Test Position Results from Box Maneuver.

210

http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v3n5/aiaa/15429423/v3n5/Multimedia/18998MM1.wmv
http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v3n5/aiaa/15429423/v3n5/Multimedia/18998MM2.wmv
http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v3n5/aiaa/15429423/v3n5/Multimedia/18998MM3.wmv

CHRISTOPHERSEN ET AL.

Fig. 17 Flight Test Heading Results from Box Maneuver.

Fig. 18 Flight Test X-Body Axis Position from Box Maneuver.

211

CHRISTOPHERSEN ET AL.

Fig. 19 Flight Test Y-Body Axis Position from Box Maneuver.

VI. Conclusions
Utilizing the FCS20 DSP/FPGA system, it was possible to demonstrate a highly capable processor combination

(2 GFLOPS) together with an IMU, differential GPS, data link, video transmitter and batteries in a space slightly
larger than a soda can (60 cubic inches) and weighing less than one pound. The suitability of the FCS20 for a wide
range of vehicles and system requirements was demonstrated by using it for the guidance, navigation, and control
of both a large GTMax rotorcraft UAV[17] and a small ducted fan UAV.[18]

This illustrates that future small UAV systems can potentially take advantage of far more complex onboard
processing than is generally the case today, in this case including 16-state extended Kalman filter and a neural
network adaptive flight control system. The hardware and software described could also perform image processing,
obstacle avoidance, and data encryption tasks with minor hardware changes.

Future work includes further miniaturization of the overall system volume, particularly with respect to sensors
and wireless communication. To effect maximum system parallelization, future plans also include moving functions
currently implemented on the NiosTM directly to the FPGA and subsequently eliminating the NiosTM, which is
currently the main data bottleneck in the system.

Acknowledgments
The authors would like to acknowledge some of the many other contributors to this work: Jeong Hur, Phillip

Jones, Daniel Schrage, George Vachtsevanos, Allen Wu, and Brent Yates. This work was supported in part by the
DARPA Software Enabled Control (SEC) Program under contracts #33615-98-C-1341 and #33615-99-C-1500.

References
1Cloudcap Technlogies website, accessed on 07/11/2005: http://www.cloudcaptech.com/
2MicroPilot website, accessed on 07/11/2005: http://www.micropilot.com/prod_mp2028g.htm
3UAV Flight Systems, Inc. website, accessed on 07/11/2005: http://www.uavflight.com/AP50.htm
4Athena Controls website, accessed on 07/11/2005: http://www.athenati.com/gs111m.htm
5Danville Signal Processing, Inc. website, accessed on 07/11/2005: http://www.danvillesignal.com/index.php?id=zx_

platform
6Traquair website, accessed on 07/11/2005: http://www.traquair.com/catalog/microline.products.html

212

CHRISTOPHERSEN ET AL.

7Lyrtech Signal Processing website, accessed on 07/11/2005: http://www.lyrtech.com/DSP-development/
dsp_fpga/signalwave.php

8Labrosse, J. J., MicroC/OS-II, “The Real-Time Kernel,” CMP Books, 2003.
9Kannan, S. K., Koller, A. A., and Johnson, E. N., “Simulation and Development Environment for Multiple Heterogeneous

UAVs,” AIAA Modeling and Simulation Technology Conference, AIAA-2004-5041, Providence, Rhode Island, August 2004.
10Dittrich, J., and Johnson, E. N., “Multi-Sensor Navigation System for an Autonomous Helicopter,” AIAA/IEEE Digital

Avionics Systems Conference, 2002.
11Dittrich, J., and Johnson, E., “Design and Integration of an Unmanned Aerial Vehicle Navigation System,” A Thesis, School

of Aerospace Engineering, Georgia Institute of Technology, May 2002.
12Gelb, A, et al., “Applied Optimal Estimation,” The M.I.T. Press, 1974.
13Brown, G., and Hwang, P., Introduction to Random Signals and Applied Kalman Filtering, 2nd Edition, John Wiley & Sons,

1992.
14Bletzacker, et al., “Kalman filter design for integration of Phase III GPS with an inertial navigation system”, Computing

Applications Software Technology Technical Papers, Los Alamitos, CA, 1988.
15Johnson, E. N., and Kannan, S. K., “Adaptive Trajectory-Based Control for Autonomous Helicopters,” In the Proceedings

of the AIAA Digital Avionics Systems Conference (DASC), 2002.
16Johnson, E., and Kannan, S., “Adaptive Trajectory Control for Autonomous Helicopters,” AIAA Journal of Guidance,

Control, and Dynamics, Vol. 28, No. 3, 2005.
17Johnson, E., Schrage, D., Prasad, J., and Vachtsevanos, G., “UAV Flight Test Programs at Georgia Tech,” Proceedings of the

AIAA Unmanned Unlimited Technical Conference, Workshop, and Exhibit, 2004.
18Christophersen, H., Pickell, W., Koller, A., Kannan, S., and Johnson, E., “Small Adaptive Flight Control Systems for UAVs

using FPGA/DSP Technology,” Proceedings of the AIAA Unmanned Unlimited Conference, Chicago, IL, 2004.
19Stevens, B., and Lewis, F., “Aircraft Control and Simulation,” Wiley and Sons, 2004.

213

